PDT for Atherosclerosis and Cholesterol Plaques
1 PhotoPoint Photodynamic Therapy Promotes Stabilization of Atherosclerotic Plaques and Inhibits Plaque Progression
Abstract
Objectives: The purpose of this study was to determine how photodynamic therapy (PDT) promotes stabilization and reduction of regional atherosclerosis.
Background: Photodynamic therapy, a combination of photosensitizer and targeted light to promote cell apoptosis, has been shown to reduce atherosclerotic plaque inflammation.
Methods: Forty New Zealand White rabbits were fed with cholesterol. The iliac arteries were balloon denuded and randomized to receive either PhotoPoint PDT treatment (photosensitizer and light) (Miravant Medical Technologies, Santa Barbara, California), photosensitizer (MV0611) alone, or light alone and were then compared at 7 and 28 days. Arteries were examined for evidence of plaque volume, cell number, macrophage and smooth muscle cell (SMC) content, and plaque cell proliferation.
Results: Compared with contralateral iliac artery controls at 7 days, plaque progression was reduced by approximately 35% (p < 0.01); plaque progression was further reduced to approximately 53% (p < 0.01) by 28 days, leading to an increase in lumen patency (p < 0.05). At 7 days after PDT, percent plaque area occupied by macrophages decreased by approximately 98% (p < 0.001) and SMCs by approximately 72% (p < 0.05). At 28 days after PDT, removal of macrophages was sustained (approximately 92% decrease, p < 0.001) and plaques were repopulated with non-proliferating SMCs (approximately 220% increase, p < 0.001). There was no evidence of negative or expansive arterial remodeling, thrombosis, or aneurysm formation.
Conclusions: Photodynamic therapy simultaneously reduces plaque inflammation and promotes repopulation of plaques with a SMC-rich stable plaque cell phenotype while reducing disease progression. These early healing responses suggest that PDT is a promising therapy for the treatment of acute coronary syndromes.
2 Sonodynamic Therapy: A Potential Treatment for Atherosclerosis
Abstract
Atherosclerosis (AS), a chronic arterial disease, is one of the major causes of morbidity and mortality worldwide. Several treatment modalities have been demonstrated to be effective in treating AS; however, the mortality rate due to AS remains high. Sonodynamic therapy (SDT) is a promising new treatment using low-intensity ultrasound in combination with sonosensitizers. Although SDT was developed from photodynamic therapy (PDT), it has a stronger tissue-penetrating capability and exhibits a more focused effect on the target lesional site requiring treatment. Furthermore, SDT has been demonstrated to suppress the formation of atheromatous plaques, and it can increase plaque stability both in vitro and in vivo. In this article, we critically summarize the recent literature on SDT, focusing on its possible mechanism of action as well as the existing and newly discovered sonosensitizers and chemotherapeutic agents for the treatment of AS.