Lung and Bronchi Ca
-
Photodynamic Therapy for Lung Cancer
In Japan, Photodynamic therapy (PDT) is recommended as a treatment option for centrally located early-stage lung cancers (CLELCs). It is a minimally invasive treatment with excellent anti-tumor effects. The 2nd generation photosensitizer, talaporfin sodium has strong anti-tumor effects with much less photosensitivity than porfimer sodium. Moreover, the laser equipment is compact and portable, and talaporfin sodium is now the current mainstay of PDT for lung cancer. For successful PDT, accurate evaluation of tumor extent and bronchial invasion is crucial. Detailed examination of the tumor using autofluorescence bronchoscopy and endobronchial ultrasonography or optical coherence tomography is extremely useful before PDT. At present, PDT has become the 1st choice of treatment for CLELC in institutions with the necessary equipment. It can also be effective for advanced lung cancer causing a tracheobronchial obstruction. With such advances in PDT for CLELC, we are expanding the indications of PDT for not only CLELC, but also peripheral type lung cancer
2 Photodynamic Therapy for Lung Cancer and Malignant Pleural Mesothelioma
Photodynamic therapy (PDT) is a form of non-ionizing radiation therapy that uses a drug, called a photosensitizer, combined with light to produce singlet oxygen ((1)O2) that can exert anti-cancer activity through apoptotic, necrotic, or autophagic tumor cell death. PDT is increasingly being used to treat thoracic malignancies. For early-stage non-small cell lung cancer (NSCLC), PDT is primarily employed as an endobronchial therapy to definitively treat endobronchial or roentgenographically occult tumors. Similarly, patients with multiple primary lung cancers may be definitively treated with PDT. For advanced or metastatic NSCLC and small cell lung cancer (SCLC), PDT is primarily employed to palliate symptoms from obstructing endobronchial lesions causing airway compromise or hemoptysis. PDT can be used in advanced NSCLC to attempt to increase operability or to reduce the extent of operative intervention required, and selectively to treat pleural dissemination intraoperatively following macroscopically complete surgical resection. Intraoperative PDT can be safely combined with macroscopically complete surgical resection and other treatment modalities for malignant pleural mesothelioma (MPM) to improve local control and prolong survival. This report reviews the mechanism of and rationale for using PDT to treat thoracic malignancies, details prospective and major retrospectives studies of PDT to treat NSCLC, SCLC, and MPM, and describes improvements in and future roles and directions of PDT.